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In this paper we show that the Boltzmann weights of the three-dimensional
Baxter-Bazhanov model give representations of the braid group if some suitable
spectral limits are taken. In the trigonometric case we classify all possible
spectral limits which produce braid group representations. Furthermore, we
prove that for some of them we get cyclotomic invariants of links and for others
we obtain tangle invariants generalizing the cyclotomic ones.
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1. INTRODUCTION

Baxter and Bazhanov!" introduced a particularly interesting three-dimen-
sional integrable model with N local states. It is one of the few solvable
three-dimensional models and seems to be highly nontrivial.

The Baxter-Bazhonov model is a generalization of the Zamolodchikov
model,>¥ which is the particular case N=2. Kashaev et al.**) proved
that the Boltzmann weights of the Baxter-Bazhanov model satisfy the
tetrahedron equations.’>%”) This is a generalization of the result obtained
by Baxter® for the Zamolodchikov model. They use the symmetry proper-
ties'® of the Boltzmann weights, which have been found independently also
by Bazhanov and Baxter.”®
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One of the most important features''’ of the Baxter-Bazhanov model
is that apart from a modification of the boundary conditions, it can be
obtained as a three-dimensional interpretation of the generalized si(n)-
chiral Potts model."'%!?

Given a two-dimensional integrable model, which has Boltzmann
weights satisfying the Yang-Baxter equation, it is an interesting question to
ask which braid group representations and hence which link invariants
arise therefrom. Akutsu, Deguchi, and Wadati"*'¥ invented a general
procedure to study this problem and obtained link invariants from most
two-dimensional integrable models. Date ef al.!'>’ studied the braid group
representations and the corresponding (cyclotomic) link invariants arising
from the si(n)-chiral Potts model in the trigonometric limit. Following a
suggestion made by Jones,"'®) they generalized the results of Kobayashi
et al."?) for the s/(2)-chiral Potts model. The connection of such invariants
with the Seifert matrix has been studied by Goldschmidt and Jones.'®’

Following a similar scheme, we study the three-dimensional integrable
Baxter-Bazhanov model from the point of view of the link theory. We
generalize the results of ref. 15 to the R-matrix with spectral parameters
associated to the Baxter-Bazhanov model. We show that, choosing suitable
limits of the spectral parameters, this matrix gives cyclic representations of
the braid group. In the trigonometric case we classify all possible spectral
limits which produce braid group representations. We prove that for some
of them we get cyclotomic link invariants, while for other limits of the
rapidity variables (spectral parameters) the R-matrix of the Baxter—
Bazhanov model gives tangle invariants. Such invariants are generaliza-
tions of the cyclotomic invariants previously mentioned.*

2. THE THREE-DIMENSIONAL BAXTER-BAZHANOV MODEL
AND ITS TWO-DIMENSIONAL REDUCTION

The Baxter-Bazhanov model'" is an integrable three-dimensional IRF
(interaction-round-a-face) model. This means that it is defined on a simple
cubic lattice . and that a spin variable o is placed at each site of #. From
the point of view of statistical mechanics the Baxter—Bazhanov model
depends on two integer parameters N (N > 2) and n. Here N is the number
of values that each spin ¢ can take, while » is one of the lattice dimensions
{(number of elementary cubes in a fixed direction, e.g., in front-to-back
direction).

4 This work is mainly based on the thesis of B. L. Cerchiai (Modelli di Baxter-Bazhanov e
di Potts chirale e teoria dei nodi, academic year 1992-93), in fulfilment of the requirements
for the degree (laurea) in physics.
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Fig. 1. Elementary cell.

The elementary cube of .# is shown in Fig, 1.

In order to define the Boltzmann weight of the elementary cell shown
in Fig. 1 it is necessary to introduce some notation first.

Let x be a complex parameter and k, /, m three integers, 0 <k, /, m<
N—1. Let w be a primitive Nth root of unity

w = e*™ N (2.1)
and

w'? =™ (22)

Let & and s be the functions defined by

D(1)= (') VD (2.3)
stk, 1) =w* (24)
Notice that
stk + N, 1)=s(k, |+ N)=s(k, 1) (2.5)
stk + 1, m)=s(k, m) s(I, m) (2.6)
D(k+1)=D(k) D(l) sk, 1) (2.7)

Moreover, let w(x, /) be the function defined by

w(x, 1)

!
_ 7/ k-1
0= AW I (-0 (28)

k=1
where

A(x) = (1 — xM)N (2.9)
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With this definition the function w(x, /) is fixed up to the overall nor-
malization factor w(x, 0), while 4 is fixed up to the choice of a phase when
taking the root. In particular it is possible to impose the following condi-
tion on w(x, 0):

w(x, 0) = w(w*x, 0) (2.10)

Applying this condition (2.10) to the definition of w in (2.8), it follows
immediately that

w(x, 0) w(x, [+ k) = w(x, k) w(w*x, ) (2.11)

Having introduced all this notation, following ref. 1, the Boltzmann weight
of the elementary cube shown in Fig. 1 is constructed as

N-—1
Walefiglbedlh)=} vialefiglbecdlh) (212)

6=0
with
viale f,gb,c,d|h)
_ w(p'/p,e—c—d+h)
w(p'/p,a—g—f+b)

y {W(p/q, d—h—a)w(q'[p,o—f+b)w(p'/q’,a—g—0)
w(p'lg,e—c—o)[Pla—g—0)]""

s(c—h,d—h)s(g,a—g—f+b)

xs(a,a—c—f+h)} (2.13)

The parameters p, p’, ¢, ¢’ are the so-called spectral parameters. To stress
the dependence of W on these parameters, it would be more correct to
write

W= W[p’ P’, 9, qI]

Notice that the spins are seen as elements of Z,. In the expressions
(2.12) and (2.13) ¢ can be interpreted as a spin at the center of the cube.
The elementary interactions are shown in Fig. 2.

This means that in fact we are not considering a simple cubic lattice,
but a body-centered cubic lattice. Bazhanov and Baxter noticed!’ that the
model obtained in this way is an Ising-type model. Thus it turns out that
(up to an overall normalization factor, a site-type, edge-type, and face-type
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e d

Fig. 2. Interactions in the elementary cube.

equivalence transformation) W satisfies the tetrahedron equation,®*>
which guarantees that the model is integrable:

Z Wias| ca,cp563| by, b3, b,1d) Wiley | by, as,b, | cq,d, ce| by)
d

XW'(b,|d, cq,c3|az, by, byl cs) Wid| by, by, by | c5, 5,61 a)

=Y W"(bilcr,cac3lar,aq,a31d) Wicy | by, a3, a4 d, 05, ¢6 | ay)
P .

xWias|cy,d, el ay,b3,a, | ¢s) Wd| ay, a;,a, | ¢y, ¢5, c6 | by)
(2.14)
In this equation W= W(P), W'=W(P'), W"= W(P"), and W" = W(P"),
where
P=(x1,x2,x3,x4), Pl=(xll=x127x13,xzt) (215)

" " m " "

" " " " 10t
P=(x1,x2,x3,x4), P =(x1,x2,x3,x4)

with (x,, x,, x5, Xx4)=1{(q, q’, p, p’) and the primes are added to the x’s in
correspondence with primes of the P’s. Defining further

xy=x:4(x;/x;) (2.16)

we have that the tetrahedron equations (2.14) hold provided that the coor-
dinates of the points P, P’, P”, P" satisfy the following constraints:

’ ! "

X3 _ X2 X2 _ X12 X3 X
— = — m

X, Xy X, Xxi wx, X
" 172 ” 172 "

X34 _ X1 W X3 X4 _ Xy W7 X12X34 X2

"’ ”n?

172 - "
o'xy  xi X14X32 X3 X14X32 X3
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_r ’ ” ” Pt " " _n _
X14X32 _ X14X32 X12X34  X12X34 X3 _ X3
ror "o ' T o ? o _m
X13X24  Xy3Xo4 X13X24  Xy3X24 X4 Xg
L _mt ‘' o m _ "o m
X34 _ X34 Xq  Xy3Xa4 Xag _ X12X34
T T A2 om = e
X B A )
1/2 .. o " o "
W X35 Xg X34 X3 =1 X3 X X14X -1
1" — % ' T
X3X54X3 X34 X X14X] XT4
L " 172 v m
X4 Xg X4 Xg WX 13 X3X3X, -1 (2.17)
Lt o, MEERAL LI St Chat B .
X4 X14X4 X5 X3X13 X1 X5

At this point it is useful to consider also the Boltzmann weight S
of a parallelepiped 2 formed by a whole line of n cubes in front-to-back
direction with periodic boundary conditions. Let

0= (05 weey %), p=0B, -0,
}):(‘y}a'"a Vn)’ 52(51,'"’ 5:1)

(2.18)

denote the spins on the edges of # (Fig. 3).
Then

S(a, B,7,0)= l—[ W(éilaiayi:6i+l |Vi+1,“i+1aﬁi|ﬁi+|) (2.19)

ieZ,

Notice that S depends only on the pairwise differences of adjacent spins.
This means that it is conmsistent to assume the following equivalence
relation between the spins:

a~feo,—o;  =B—Bis: Vi=1,..,n (2.20)
8 4!
bn Tn
a 43 o 73
a, b2 72
C!g\J ) T
(2]

ay ﬂl

Fig. 3. Parallelepiped 2.
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Further, following Baxter and Bazhanov, let us introduce also a
slightly modified model. Let us substitute the variable o with the difference
of two new spins in front-to-back direction,

o=p—y (2.21)
This means that considering a row of n cubes in front-to-back direction, the
following constraint is imposed on the variable g:
Y ¢,=0 (mod N) (2.22)
ieZ,

The model obtained with this change of boundary conditions is called by
Baxter and Bazhanov the “modified model.” The Boltzmann weight of the
parallelepiped 2 formed by a line of cubes in front-to-back direction is
denoted S,:

N-1
Sola, B, 7, 8) = H z U;‘,~,‘,+.(5i| Uiy Vir Oiet | Vinets %ie s Bil Bis )

ieZ, pu;j=0
(2.23)
with
vy,—;l,+](5i o Vi Gy | Viw 1> vty Bil Bist)

WP/P’ i :+1 —Bi+Bis1)
sl 1= Biv1s Bi—Bist)
w(p'[p,6;—0; 1 —7i+Vis1) ! *! !

X8(6;41,0;—0;s1— Vit Yis1)

x{w(l’/q,ﬁ =B =it ) W@, i — i = Vit Yis )
w(p'lg, a;— o, #i+ﬂi+1)[¢(5i—5i+1_Hi+ﬂi+1)]_l

xXw <%, 5f_5i+1_lr‘i+/~‘i+1>

XS(— Hiw 1y 05— iy ?:+ﬂ:+1)} (2.24)

The key idea of ref. 1 is to describe the Baxter—-Bazhanov model as an
integrable generalized chiral Potts model'®'? in the IRF presentation by
the prescription in Fig. 4. For this aim, one starts from an edge of the two-
dimensional lattice on which the chiral Potts model is defined. This edge is
extended in a third additional dimension perpendicular to the plane of the
two-dimensional lattice to form a rectangle consisting of » squares. The
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ay B
Eﬂn

as Bs
Q2 ﬂz
(23] ﬂl

g —— o B

a=(a..-,an) B=(Pry-.-1Pn)

Fig. 4. Reduction procedure.

two spins a = (ay, .., ,) and B =(f,, .., B,) located at the vertices of the
two-dimensional lattice are placed on the edges of the rectangle, as shown
in Fig. 4. Cyclic boundary conditions are assumed in the new dimension,
considering the spins «,, §, as next to a,, f,, respectively. Doing this con-
struction for all edges of the two-dimensional lattice, we see that it becomes
the three-dimensional cubic lattice ¥ with N-valued spins at each site.
Baxter and Bazhanov proved that the weight function W, («, §) of the
chiral Potts model associated with an edge can be written in the form

qu(a’ 'B) — Iﬂl {w(ﬁ.—ﬂiu)(txnl—lixu)
W,,(0,0)

i=1

i

o (B o =Bt B )} (225)
Notice that the rapidity variables in (2.25) form an n-vector

p=(p1,-‘-$pn)a q=(ql’---7 qn)

exactly as the spins do. In the three-dimensional interpretation the weight
W,, s associated to the whole rectangle constructed in Fig. 4. This three-
dimensional reinterpretation of the two-dimensional statistical model is
allowed by the factorization property (2.25) of the Boltzmann weight: the
ith term in the product depends only on the four spins o;, f;, ¢;., Bisy
Icated at the vertices of the ith elementary square in the rectangie. Notice
that not all two-dimensional integrable models have this factorization

property.
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Let us now consider the star of Fig. 5. Corresponding to this con-
figuration we define the star-Boltzmann weight W (). of the IRF chiral
Potts model

Welp.p' 4,4 | a, B, v, 0)
_ Z WP'P(a’ ﬂ) qu(ﬂ’ /l) Wq‘p(p's Y) Wp’q'((sa Il)
H WP'P(é’ 7) Wp'q(as .u')

whose W (i,j=p,p',q,q') are the edge-Boltzmann weights defined in
(2.25). It turns out that W) satisfies the Yang—Baxter equation‘!!!?

star

(2.26)

YWp g9 |0 B,y,0) Wip:p,r.r' | 0,7,0,¢)

a

xWil(g.q,rr a0 e k)
=Y Wilg. ¢, r.r'|B,y.5,0)

xWlip,p,r,ropB o) Wiipp.q.q |k 0,6,6)(227)

The connection between the chiral Potts model and the Baxter—
Bazhanov model arises because it turns out that the Boltzmann weight of
the row of cubes in front-to-back direction £ in the modified model exactly
coincides with W}

star?
SO(a: )Bs ¥ 5) = ngla)r(a! ﬁ1 12 5) (228)

Then in order to construct (cyclic) representations of the braid group,
the usual procedure!!® is to map by a Wu-Kadanoff-Wegener-like trans-
formation the IRF R-matrix defined by W{) to a vertex-type one, and
hence to show that it is an intertwiner of the (cyclic) representations of the
quantum group U, (gl,). The main result of this paper is to show in the

next sections that by choosing some suitable limits of the spectral

6 ¥

a g p"B

Fig. 5. Elementary star.
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parameters characterizing the IRF R-matrix (2.26) of the three-dimensional
Baxter—-Bazhanov model, one may obtain directly cyclic representations of
the braid group, similarly to the two-dimensional case.'>'*)

3. THE CYCLOTOMIC INVARIANTS

In order to construct cyclic representations of the braid group and the
related cyclotomic invariants, the starting point is the construction of a
C*-algebra «/(c) and of a functor & from the category of the uniform
oriented tangles I % to /(c), following Date et al."* Notice, however,
that they suppose N odd, whereas we consider also the case N even, when
this is possible. Let us introduce some notations first.

Let L be a free Z, module of rank #n — 1 and suppose it is given by the
exact sequence

O0—-Kern=2Zy(1,.,1)=Z}—-L-0
This means that it is possible to write the elements of L as
o= (al’ ooy an)

with the equivalence relation (2.20), which implements the Z”,~' symmetry
of the Baxter—Bazhanov model.
Next let us introduce the nonsingular bilinear form B on L,

B(a, B)= — z o (Bi—PBiv1) (3.1)
ieZ,
which corresponds to the n x n matrix
-1 if i=j
B,= 1 if i=j—1 (mod n) (3.2)

y
0 otherwise

Let A(a, B) be twice the skew-symmetric part of B(a, f8),
A(a, B)=B(a, B)— B(B, a) (3.3)

These definitions are consistent, since B respects the equivalence relation
(2.20). Notice that the form B considered in §4 of ref. 15 is twice the form B
introduced here. The following Z ,-linear isomorphisms ¥ and * of L can
be constructed:

B(a, f)= —B(B, a)
B(d’ ﬂ) = _B(ﬂs (1)

Clearly ~ is the inverse of .

(34)
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Next we consider the category of the uniform oriented tangles 7 1.
Recall that this category is defined as follows.""*2%) The objects of 7 4/ are
given by configurations ¢ of M strings. By a configuration we mean a
map ¢: {1, .., M}+— {£+1} that we write ¢ = (¢(1), .., c(M)). We say that ¢
is of type (M., M_), if M, =number of k for which c(k)=1, M_=
number of k for which ¢(k)= — 1. Obviously M =M, + M _. Graphically
a configuration c is a set of M strings such that the kth string, counted from
left to right, is downward or upward according as c(k)=1 or ¢(k)= —1,
respectively. There is an action of the symmetric group S,, on the set of
configurations of M strings, and it is defined by

s(c)=cos™!, with seS,,
Notice that s(¢)=c¢' if and only if ¢ and ¢’ are of the same type.
An (M, M)-tangle ¢ is a smooth one-dimensional compact sub-
manifold of R? x [0, 1] such that

dr=tA(R*x {0, 11)={(5,0,0) | i=1, .., M}U{(j,0, 1) j=1, .. M}

and such that every boundary point is orthogonal to the planes R x0 and
R x 1. A tangle is said to be oriented if the manifold is oriented. Two
configurations ¢ and ¢’ are associated to each tangle in such a way that
¢(ky= 41 if the unit tangent vector to ¢ in (k,0,1) is (£1,0,0) and
¢'(k)= %1 if the unit tangent vector in (£, 0,0) is (£ 1, 0, 0), respectively.
Two tangles are isotopic if there exists an isotopy of the strip R*x [0, 1]
to itself, which is the identity on the boundary and which carries one tangle
into the other. An (M, M)-tangle is said to be uniform if it intersects
each horizontal line between the top edge and the bottom edge at exactly
M, M —1, or M —2 points. In the case ¢ and ¢’ are of the same type, the
morphisms hom(c, ¢') of the category of the uniform oriented tangles J 4
are given by the set of the isotopy classes of tangles with ¢ on the top and
¢’ on the bottom, otherwise hom(c, ¢’} = .

Now, let us introduce the algebra «/(c). It is a C-algebra with a unit 1.
If M=0or M=1, o/(c) is simply C. If M =2, o/(c) is the algebra with
generators x;=x;(c) where 1<k<M—1 and aeL. We impose the
relations

x=1
xixl = A EDRx 8 ((k), elk+ 1) = (1, 1)
= @AEBRE S (c(k), ek +1))=(—1, —1)
=x§*h if clky#ctk+1)
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xixh =P POxE xt i ck+1)=—1
=f=PxB  x% il ck+1)=1
x2xB = xB x% if |k—k|=2 (3.5)

On the algebra /(c) there is a linear involution, which is defined by its
action on the generators

(xP)*=x.* (3.6)

After introducing the algebras ./(c), Date et al. showed that two
algebras &/(c) and /(c’) relative to configurations ¢ and ¢’ of the same
type are canonically isomorphic if N is an odd number:

i sl(c)— () (3.7)

To see this, let us consider the case that ¢’ = s,(c) with s, the permutation
(k,k+1). If c(k)=c(k+1), then c=c" and ig. =id . . Otherwise, in the
case that c(k)= —1, c(k+1)=1, i¢ is defined as follows:

() =xic) i k—k|>2
P s (€)= x5, () X2 T H2(c') (3.8)
e(xg(e))=x%(c)
while in the case that c(k)=1, c(k+1)= —1,
ixple)=xic) il k—k]>2
Polxp () =xk, (") X 2%(c") (3.9)
ic(xi(e)) =x;%(c)

In terms of the operators x§ it is possible to define the operators
describing the images of the functor & of the elementary tangles as

1
T (c)=—= ) @ B=2x) if ck)=clk+1)
\/l_)aeL
1
=5 Y wBBPREBEbyx(c) if c(k)#c(k+1), Nodd
o, fel
1
Edc)=—= Y x%(c) if c(k)#ck+1), Nodd

\/BaEL

(3.10)
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c(k) c(k+1) c(k) c(k+1) c(k) c(k+1) c(k) c(k+1)

A
c(k) c(k+1) c(k+1)c(k)

+ - + —
oy o 0y _ A

Fig. 6. Elementary tangles.

where D= N""'. Notice that if N is even, we consider only the case
c(k)=1Vk or c(k)= —1Vk, in which the tangles reduce to ordinary
braids. In that case the division by 2 in the exponent is not interpreted as
an operation in Z,, but as taking a square root of w. The value of the
cyclotomic knot invariant introduced in (3.21) is independent of the choice
of the root. Notice also that E, is defined only when c(k) # c(k + 1), N odd,
and that whenever this element will be considered these conditions are
implied. Recall that the functor & from the category  # of the uniform
oriented tangles is constructed as follows.!!*) First, the morphisms of I
are generated by the elementary tangles shown in Fig. 6.

Let us suppose N odd. As a consequence of the defining relations
(3.10) of the morphisms T, E, and using the commutation relations (3.5)
of the x%, Date et al’> verified that the elements (3.10) satisfy the
following relations, in which the strings should be oriented in all possible
ways:

T, Tp=T,T, if lk—k'|=2
T T =T T, Ty
Ef=E,
ET.=T.E, if lk—-k'|22 (3.11)
E.E,.=FE.E, if lk—k'|=2
THE=E,
E.E . \E.=E,
EkEkilTEl=EkTE¢]1

Notice that the first relation means that T, is unitary, while the second and
the third are the braid group relations. As an example, let us show the third
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relation, if ¢(k)=1VYk. The left-hand side of the equation may be written
as

_ —1/2[ B(z.x} + B(B.B)+ B(7.7)) 2 B -y
T T Tu= ), o XXk 1%k
= B,y

—_ ar ey -~ 2 -y g
Z o 1/2[3(1.1)+B(li»/fl+B(m)+A(av,)+-B(,v/3)]xz+)x£+1
xRy
—_ 2 PO . | L. 1 2 r )
— Z w 172[B(3,8) + B(S.B) + 2B(7.7) _B(,.&)+_B(},ﬁ)]xzx£+l

B.y.o

By the same arguments the right-hand side may be written as

_ —172[B(2,2) 4 B(3.8) + B(y.v)) .7 S a
ToirTuThoy= ) o N+ 1% Xk 41

%,8,7

— Z 0~ V/2LB18.8)+ BUB.B) + 2B(3.7) + 2B(3.7) — ZB(ﬁ‘Y)]X2X£+ 1
B.vd

Making the change of variables y — §, we obtain exactly the same expres-
sion, which gives the left-hand side.

The relations (3.11) are the defining relations of the class of the
morphisms hom(c,c¢) in the category 7 4. This means that the functor &
mapping J 4 to /(c) defined by

F(c)=(c)
(3.12)
F(of)=M(T,(c)*"), F(0F)=#(E(c)*")

is well defined. Here .#(a)e End(«/(c)) denotes the left multiplication by
ae .

Notice that if c¢(k)=1 Vk or ¢(k)= —1 Vk, then the tangles T, give a
representation of the ordinary braid group. In that case it is possible to
generalize the construction to N even, and it is immediate to see that the
first, second, and third of relations (3.11) remain valid.

Moreover, in the case that ¢(k)=1 Vk or c(k)= —1 Yk, we can con-
sider also the right multiplication by elements of «/(c) and we obtain a
right-regular representation of the braid group, not only a left-regular one.
Further, if #=2 and c(k)=1 Yk or c(k)= —1 Vk, the operators T, satisfy
the “generalized skein relations”

-1

Ti=Y AT (3.13)
i=0
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with the order / of the skein relation given by

(N+2)/2 if Neven
I= .
{(N+ 1)/2 if Nodd (3.14)
Formula (3.14) can be valid only when the equation
xt=1 (mod N) (3.15)

admits no other solutions apart from the two values x=1 (mod N) and
x=N—1 (mod N). In particular, it is valid for the prime numbers. It
shows that for n=2 and N =2, 3 the algebra defined by the operators T,
can be expressed in terms of the Hecke algebra.!'*'*) More generally,
operators satisfying generalized skein relations like (3.13) can be obtained
with a “cabling procedure” starting from the generators of the Hecke
algebra. In Eq. (3.13) the coefficients A4, are the solutions of the linear
system

1 1—1 ) ) )
—_— B(ali+ 1),2(i)—ali+ 1))
D2 > H w
®(2),.,2({)el i=1
=1 A r—1
=9 _ Blali+ Dali)— 2(i+ 1))
=dun0ndot X i > [1e (3.16)
r=1 2(2),..xlriel i=1

Moreover, let Tr denote the usual matrix trace on End(./(c)) normalized
as Tr(1)=1.

With all these preliminaries an invariant of oriented links can be con-
structed as follows. Let 7 denote the link obtained by closing the tangle 1,
and let v be the number of its crossings. Further, let (k, i), 1 <i<m,,
denote the ith crossing, counted from top to bottom, between the strings
k, k+ 1. The sign of such a crossing is denoted &(k, i), and we say that
(k, 1)< (k', ") if the crossing (k, i) is above (k’, ') in the diagram. Then

F(1)=M(TLD .. Tifkerd) (3.17)
and the expression
(fy=DM 12 Tr(d//(Tﬁ_‘]""”~--T§;‘"’f""""v’)) for rehom(c,c) (3.18)

gives an invariant of oriented links. Further, the Tr can be defined by its
action on the generators

lf al: ...a"=0 (3.19)

1
Tr(x? - x™) = _
r X {O otherwise
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The quantity (3.18) is invariant under the Markov moves

T(l/t\l) = ‘E(l/l\t) tehom(c, ¢’), t' e hom(c’, ¢)
1(85)=1(f) rehom(c,c) (3.20)

wioE)=1(i)) tehoml(c,c)

where ¢, ¢’ are configurations of M strings, and ¢(M + 1) =c(M). Because
of (3.20), the expression (3.18) gives a cyclotomic invariant of the tangle.
Here by cyclotomic invariant we mean a link invariant defined through a
cyclic representation of the braid group. In the case that the tangles are
associated to braids, the invariant is well defined also for even values of N.
Moreover, Date et al. have shown that if 5 is a closure of a braid be B,,
with v crossings, then (3.18) becomes

1(h) =N 1M =v=1)2 3 w2 2 with beB,  (321)

v=-M+1 n—1
anN ®ZN

Here Q(a, a) is the bilinear form determined by the matrix
0=S®B'+S"®B'" (3.22)

where S is a (v—M+1)x(v—M+1) Seifert matrix for b; B’ is the
n—1xn—1 matrix given by B;=1 if i<j, B;=0 otherwise; and T
denotes the transposition of a matrix. The matrix B’ is associated with the
same quadratic form given by B, because it is the obtained by making the
change of the basis o; > a;,—a;,, for i=1, .., n—1 in the module L. Notice
that it is not necessary to consider a, —a,, because the rank of L is only
n—1 by (2.20).

To obtain (3.21), observe that by using the definition of the operators
T, in (3.10), the commutation relations (3.5), and the expression (3.19) for
the trace, we obtain

r(f)=DM_"_l Z {wl/zzk_,(-(n(k,i)+e(k,f+1))B(a(k.i).a(k.1))]
a{l,1),...x(v,my—1)e L

X wl/Z ki [+ etk i+ 1)) Blax(k, i)l i+ 1)) + (e(k, i+ 1) — 1) Bla(k, i + 1), ek, i }}]

x wzk,, [Blafk, i) olk + 1.i*) = B(xlk,i—~ 1), a(k + l,i'))]} (3.23)

Here i* signifies the largest j such that (k+1,j)<(k,i). Date et al.!'>
have shown that it is possible to construct a Seifert surface for / by means
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of the Seifert algorithm, so that the corresponding Seifert form ¢ is given
by

$(y(k, i), y(k, i)
= —(e(k, i) +e(k, i+1))/2
¢(v(k, i), y(k, i+ 1))
=(1+elk, i+1))2
P(y(k, i+ 1), y(k, i)
=(—1+e¢(k, i+1))2
Ply(k, i), y(k+1,/))
=1 if (k+1,j)<k i)<k+1,j+1)<(k i+1)
$(y(k, i), y(k +1,j))
=—1 if (ki)<k+Lj)<(ki+l)<(k+1,i+1)

(3.24)

In this equation y(k, i) is the cycle passing counterclockwise through the
crossings (k, i) and (k, i+ 1). Using this Seifert form, it is immediate to see
that (3.23) coincides with the expression (3.21).

Now (3.22) has a topological meaning, since Q is a presentation
matrix for the Z, module H,(M,, Z,). Here M, is the nth cyclic covering

3

of S§* branched along the link 5. This means that for N an odd prime

number the module of 7(b) can be written as
|t(B)] = N&2 (3.25)

where B, is the first Betti number of M, relative to the homology group
H(M,, Z,). Hence, if the quadratic from B’ is nonsingular, T can be
expressed as a function of products of classical Alexander polynomials
associated to the link b.

4. THE SPECTRAL LIMITS OF THE IRF 2D REDUCED
BAXTER-BAZHANOV MODEL R-MATRIX AND
THE TANGLE INVARIANTS

In this section we shall show that it is possible to obtain directly the
cyclotomic invariants from the Boltzmann weights S of the 3D Baxter-
Bazhanov model (see Section 2), after taking some suitable limits of the
spectral parameters (p, p’, ¢, ¢'). Furthermore, we shall show that taking
other limits of the spectral parameters, it is possible to obtain general-
izations of the cyclotomic invariants from the Boltzmann weights .S, of the

822/78/3-4-28
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modified Baxter-Bazhanov model. The first step is to define the Yang-
Baxter operators

(1) -2 (M= 1)

(Yrolp, D'y g, q,))a(l)--»a(M— 1)

L ( I 5«(;)«(;,) Solatk — 1), alk), a(k + 1), &'(k))
DA (4.1)

a'(l).---a’'(M—1)

(Ye(p, P, q, ql))a([)---a(/\«l— 1)

=%<H 5&(/)1'(/)) S(o(k — 1), a(k), a(k + 1), a'(k))

1#k

These operators act on a subspace (W (@)®M-lcy @M1 where
W =(C")®" and #9 is the subspace generated by the elements of #,

éa:ZBml+k®"'®sx,,+k (42)
k

where ¢; is the canonical base of C¥ and ae L. The subspace #°© has
dimension D=N""!, while ¥ has dimension N". But this restriction is
necessary in order to implement the Z% ' symmetry of the Baxter-
Bazhanov model and hence the equivalence relation (2.20).

Then Yang-Baxter operators depend on the spectral parameters
(p, P, ¢, q')- In analogy with the standard procedure established by, e.g.,
Akatsu, Deguchi, and Wadati,"*>'* the operators Y, and Y, give a matrix
representation of the braid group B,, if some spectral limits on (p, p’, g, ¢’)
are taken. It turns out that in these limits Y, goes either to the left-
regular or to the right-regular representation of the operators T,(c)*' with
ck)=1 Vk=1,.,M or c¢lky=—-1 Vk=1,.., M. To find braid group
representations the first thing is to look for the values of the spectral
parameters where the model is critical. This means that we must consider
the trigonometric limit in which all the elementary cubes in the parallel-
epiped £ considered in Section 2 have the same spectral parameters. This
assumption guarantees that the model is homogeneous. Then we have
found the following limits in which we obtain the left-regular representa-
tion of the operators T2', k=1, ., M—1:

(la) p<g<p'=q"Y, > Tic) ck)=1, Vk=1,., M
(Ib) g<p<p =q:Ye T c), ck)=1, Vk=1,.,M )
(la) p'<q <p=gq: Y Tylc), ck)=—1, Vk=1,..M

(Ib) ¢'<p' <p=q: YT c),  clk)=—1, Vk=1,., M
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To see this, let us choose the following base of the algebra .«/(c),"**

{y(c)=w“”z’z‘ﬁ"zBdkm(“(k)'u(k+mxofm“'xﬁ;/‘i?l)}a(k)el_ (4.4)
where
B(a i =1
LCUR PSS (3
The map
p: A(c) s (W)@ M- (4.6)
defined by
p(¥(e)=E,1\® - @ &yar—1) (4.7)

is an isomorphism of C*-algebras. Let us prove that (Ia) is right. The
matrix elements of the operators pTp ' in the case c(k)=1 Vk, omitting
p, can be written as

2(1) -2 (M —1)
(Tk):((])n-az(M—l)

1
B’ (k). 2(k))
~ < H 51(/):'(1)) w
NG

X w[l/Z(B(x(k) —a'(k)alk + 1)) — Blalk — 1), alk) — a'(k)) — Blalk). x(k)) — Blx'(k),2'(k)))]

(4.8)

where ~ means the isomorphism given by conjugation with p. The
Yang-Baxter operator Y, in the limit (Ia) gives the same matrix operators,
provided a similarity transformation is made. To obtain this result, let us
calculate the limits of the function w defined in (2.8). We find

e py [POT T xoe
‘y("_’0)= Sro if xo1 (49)
W 1 if x—0

Using these limits, it is possible to show that

wf*==8  if plg—> ©

Sus it plg—1 (4.10)
wBPe=B  if plg—0

Wpg(2 B) _
w,,(0,0)
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From (2.28) it follows immediately that in the limit (Ia)
S(a, B, 7, 6)=So(a, B, y, §) = @BOP—BO.S+ Blad—f) (4.11)

To obtain (4.8) from (4.11), we multiply S by the factor
\/Bw[B(é,J)—B(ﬂ./i)-&-B(ﬁ—é.y)+8(a.ﬂ~6)]/2 (4.12)

It is a site-type, edge-type, face-type equivalence transformation and does
not change the factorization properties nor the partition function of the
model. With the same tools it is possible to see that (Ib), (IIa), (IIb) hold,
provided that S is multiplied by the factor (4.12) in the case (Ib), and by
the factor

\/5 [ BB.BY = B(5.8) — BB = 5.x) — B, f = 5))/2 (4.13)

in the cases (IIa) and (IIb). Further, by the same arguments, it is possible

to prove that there are other limits giving the T}' in the right-regular

representation, obtained from the left-regular one by transposing the
matrices. These limits are given by

(Ila) p =q<p <q: Yoo Tic), ck)=1, Yk=1,..,M
(Illb) p =q<q'<p Y, =T '(c), ck)=1, Vk=1,.,.M
(IVa) p'=qg' <p<qY,—T(c), ck)=-1, Vk=1,.. M
(IVb) p'=q' <q<p: Yo Tl c), ctk)=—1, Vk=1,., M

(4.14)

At this point a question arises: it is possible to get other kinds of braid
group representations and hence other link invariants starting from the
Yang-Baxter equation of the Baxter—-Bazhanov model? For N odd we
fix the configuration of 2M — 1 strings where c(2k—1)=—1, c(2k)=1,
Vk=1,..,M—2, ¢c(2M —1)= —1. We obtain the following picture for
k=1,.,M-3:

(Va)  p'kqg'<p<q: Yo

To s 1524 106)) TaielS 24+ 106)) T4 2(S 264 1(€)) T4 (c) ™!
(Vb)  g'<p'<g<p: Yo

Tk 12 41(€)) TS24 1(6)) 7 Ty 2826 11(€)) ™ Ty (€)™
(VIa) p<g<p'<q" Yo

T+ 10820 410D 7! Toa(S2041(€)) Tase s 282 41(€)) Toie 1 4(€)
(VIb) g<p<qg' €p" Yo

Tops 10824 1(€)) 7" T2k 1(€)) ™ Tag 4 o(524 4 1(€)) ™" Tgey ()
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(VIla) p<g<kq'kp Yo

Top s 1(S2+106)) 7! Tap(S26 4 1(€)) Tk s 2524 1(€)) ™" T 1)
(VIIb) g<p<kp'Kq't Yo

Tot s 108255 1(6)) 7! Taael52411(6)) ™" Tap g 2(S2u 4 1(€)) Ty 1(€)
(VIIIa) ¢k p' < p<q. Yio—

T+ 10825 4 106)) TotS26 4 1(€)) Taie w2524 1(€)) 7! T y(€) ™!
(VIIIb) p' g’ €q<p: Yo

T+ 1826 41(€)) TaalS21 4 1(€)) ™" Tase s 2S2 41 (€)) Taesi(e)™!
(IXa) p<kp'€g<q: Yo

Toe v 10826 +1(€)) Tarl2641(€)) Tap 4 2(826 41(€)) T4 1()
(IXb) g<qg'€p<kp" Yo

Top s 1(S24106)) " TarlS25 4 1(€)) 7" Ty 282 41(€)) ™! Ty y(€) ™!
(Xa) p'kp<qg'<q: Yo

Tore v 1052k +1(€)) Tae(S2k 4 1(€)) Tase 4 2826 41(€)) Tox 1 1(€)
(Xb) ¢’ kgq<p'<p: Yio—

Tk 410520 4 1(€) 7" ToplSi 1 1(€)) ™" Ty 2(S 21 1(€)) ™" Tage (€)™

(4.15)

Now we must explain the meaning of the products

T12k+1(52k+l(c)) TiZk(SzkH(C)) Ti2k+2(32k+l(c)) T¢2k+l(c)

where T, ,=TZ'. We construct a representation # of A(c) on
(W ©)y®M-1 for the configuration c(2k—1)= —1, ¢(2k)=1 for 1<k <
M =2, ¢(2M —1)= —1 in the following way. Notice that adjacent strings
have the opposite directions. Following ref. 15, we introduce the following
operators acting on # ‘%)

Z=1® - ®ZQ® ---®1 (4.16)
X=1Q® - ®X® --- ®1 (4.17)
where X and Z act on the ith factor C" in #'¥ and are defined by

Zk/=5k./+| (4~18)
Xk,=wk5k., (4.19)
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for k, le Z . Moreover, using the operators (4.16) and (4.17), we define for
ael

Xe=Xo... X% (4.20)
VALY AR Al (4.21)

Then the representation £ is given by

R(xy_)=1® - QZ'® - QI (4.22)
Rx3)=1® - - ®X*RX Q- -®1 (4.23)

where the action of Z* in (4.22) is on the kth space, while the action of
X% ® X % in (4.23) is on the kth and (k + 1)th spaces. Notice that it is
possible to multiply the operators T, ,(s.(c)) T\(c) relative to configura-
tions which differ by a permutation, because the algebras &/(c) arising from
configurations of the same type are canonically isomorphic through (3.8)
and (3.9). Thus, as a consequence, the matrix elements of the Yang-Baxter
operators Y, in the limits (V)-(X) are exactly the matrix elements of the
products

Tyop 1526 1 106)) T oo (21 41(€)) T o 4 2(S 24 1(€)) T2 1)

in the representation %, where in (4.15) we have omitted to write the
label £.

Moreover, we have verified that the trace on the braid group represen-
tation given by the operators Y., in the limits (V) and (VI) enjoys the
Markov properties. This can be verified immediately by observing that in
the representation £ the trace has the properties (3.19). Let us show, e.g.,
the invariance under the Markov move 2 in the case (Va). We define

T By (WM

(4.24)
T[(bk)= Y/\‘O’ k=1,..., M‘_3
where the b, are the braid group generators satisfying the relations
bkbk‘=bk'bk for k, k’zl, ...,M_3, |k—k,|>2
(4.25)

bkbk+lbk=bk+lbkbk+l for k=l,,M‘—4

and
v'(b) = D™ 3 Tr(n(b)) (4.26)
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where the trace is normalized as Tr(1)= 1. Indeed, omitting to write the
configuration ¢ on which the operators act, by applying repeatedly first and
second Markov moves, as well as the braid group relations, we obtain

(G- = D THE(E) T To— T T )
=DM Tr(T 50— 11(8) Tarr—1 Tans—2Tars)
=DY P T(T 35— 7n(8) Tanr—1 Tans—2)
=DY "2 Tr(n(g) Tarr—1 Tars—2T 301 _ 1)
= DM~ Te(n(g) T 12t Tans—1 Tane—2)
=DM~ Tr(Typ_21(8) Tipb— 2 Tans—1)
=DM 3 Tr(Top-2n(8) Tiah_»)
— () (4.27)

where ge B,,_, and b,,_,€ B,,.

If N is even, the operators Y, are well defined and it is p0551ble to
construct the representation = of the braid group. In the case (V) and (VI)
it is possible to verify that the ordinary trace on the representation enjoys
the Markov properties and hence we obtain the same link invariants that
we have when N is odd. These properties can be verified directly on the
representation 7.

To summarize, we have shown that the ordinary trace on the Y, is
invariant under the Markov moves 1 and 2, and hence provides tangle
invariants (The tangles are in correspondence with the Yang—Baxter
operators). We collect the results of this section in Table I.

5. GENERALIZATIONS

In the previous section we showed that the 3D Baxter-Bazhanov
model can be related to the cyclotomic knot invariants generated by the
limits (I)-(IV) of the associated Yang-Baxter operators Y,. Under the
other limits (V)-(X) one obtains products like

Tyoks 12k 100)) T oan(S26 4 1(6)) Ty 2ie 1 2(S 206 4 1(€)) T 21 41 (€) (5.1

It is intriguing to. think that the products (5.1) give a “cabling” representa-
tion of the braid group, analogously to the procedure established by
Akutsu, Wadati, and Deguchi!!*!¥) to construct higher-dimensional braid
group representations of the Hecke algebra of B,,. However some observa-
tions are in order:



1108 Cerchiai et al.

(i) The cabling here is perhaps related to higher-dimensional
representations of U, (gl(n)) with ¢"¥=1.

(ii) Probably we must give up the orientation, and hence the
invariants are of nonoriented type.

(ii1) The single T, are related to a representation of the Temperley—
Lieb algebra"”!'®) only for N=2, 3 and n=2. Therefore only in these cases
one may think to generalize the construction implemented in refs. 13
and 14.

Work along this direction is in progress.

ACKNOWLEDGMENT

We would like to thank Paolo Cotta Ramusino for some helpful
discussions.

REFERENCES

1. V. V. Bazhanov and R. J. Baxter, New solvable lattice models in three dimensions, J. Stat.
Phys. 69:453 (1992).

2. A. B. Zamolodchikov, Tetrahedra equations and integrable systems in three-dimensional
space, Zh. Eksp. Teor. Fiz. 79:641 (1980) [Sov. Phys. JETP 52:325 (1980)].

3. A. B. Zamolodchikov, Tetrahedron equations and the relativistic S-matrix of straight-
strings in 2 + 1-dimensions, Commun. Math. Phys. 79:489 (1981).

4. R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov, Spatial symmetry, local
integrability and tetrahedron equations in the Baxter-Bazhanov model, /nt. J. Mod. Phys.
A 8:587 (1993).

5. R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov, Star-square and tetrahedron
equations in the Baxter-Bazhanov model, Ini. J. Mod. Phys. A 8:1399 (1993).

6. M. T. Jaekel and J. M. Maillard, Symmetry relations in exactly soluble models, J. Phys.
A 15:1309 (1982).

7. V. V. Bazhanov and Yu. G. Stroganov, Conditions of commutativity of transfer matrices
on a multidimensional lattice, Teor. Mat. Fiz. 52:105 (1982) [ Theor. Math. Phys. 52:685
(1982)].

8. R. J. Baxter, On Zamolodchikov’s solution of the tetrahedron equations, Commun. Math.
Phys. 88:185 (1983).

9. V. V. Bazhanov and R. J. Baxter, Star-triangle relation for a three dimensional model,
J. Stat. Phys. 71:839 (1993).

10. V. V. Bazhanov, R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov, Z','V‘l
generalization of the chiral Potts model, Commun. Math. Phys. 138:393 (1991).
11. E. Date, M. Jimbo, K. Miki, and T. Miwa, Generalized chiral Potts models and minimal

P
cyclic representations of U,( g/ (n, C)), Commun. Math. Phys. 137:133 (1991).
12. R. M. Kashaev, V. V. Mangazeev, and T. Nakanishi, Yang-Baxter equation for the si(n)
chiral Potts model, Nucl. Phys. B 362:563 (1991).
13. T. Deguchi, M. Wadati, and Y. Akutsu, Knot theory based on solvable models at criti-
cality, Adv. Stud. Pure Math. 19:193 (1989).



3D Integrable Madels 1109

14. M. Wadati, T. Deguchi, and Y. Akutsu, Exactly solvable models and knot theory, Phys.
Rep. 180:247 (1989).

15. E. Date, M. Jimbo, K. Miki, and T. Miwa, Braid group representations arising from the
generalized chiral Potts models, Pac. J. Math. 154:37 (1992).

16. V. R. Jones, Baxterization, Int. J. Mod. Phys. A 6:2035 (1991).

17. T. Kobayashi, H. Murakami, and J. Murakami, Cyclotomic invariants for links, Proc.
Jpn. Acad. 64A:235 (1988).

18. D. Goldschmidt and V. R. Jones, Metaplectic link invariants, Geometriae Dedicata 31:165
(1989).

19. D. N. Yetter, Markov algebras, Contemp. Math. 78:705 (1988).

20. P.J. Fryed and D. N. Yetter, Braided compact closed categories with applications to low-
dimensional topology, Adv. Math. 77:156 (1989).



